Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review.

نویسندگان

  • Muralikrishna Duvvuri
  • Jeffrey P Krise
چکیده

The acquisition of multi-drug resistance (MDR) in cancer cells subjected to anticancer agents remains a formidable obstacle to successful therapeutic outcomes in cancer patients. As the name implies, the resistance phenotype (MDR) is not typically limited to the drug initially used to eradicate cancer but is often transferred to structurally unrelated chemotherapeutic agents. The mechanisms underlying the development of MDR have been extensively studied and are considered multifactorial. Interestingly, recent observations have shown that altered intracellular distribution of drugs may play an important role in the establishment of the MDR phenotype. Such intracellular redistribution events may reduce the opportunity for a drug molecule to permeate into a drug target-containing compartment and thus limit its therapeutic effect. This review summarizes cases in which intracellular redistribution of drugs has been associated with the emergence of MDR in cancer cells. The review also provides a general overview regarding intracellular compartmentalization mechanisms of drugs in cells, which will include some of the known factors/conditions that influence the accumulation of drugs into specific cellular compartments. Finally, potential strategies for overcoming this resistance phenotype are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of tcdA+/tcdB+ Clostridium difficile Genotype with Emergence of Multidrug-Resistant Strains Conferring Metronidazole Resistant Phenotype

Background: Reduced susceptibility of Clostridium difficile to antibiotics is problematic in clinical settings. There is new evidence indicating the cotransfer of toxin-encoding genes and conjugative transposons encoding resistance to antibiotics among different C. difficile strains. To analyze this association, in the current study, we evaluated the frequency of toxigenic C. difficile among th...

متن کامل

Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution.

Multidrug resistance is a major obstacle to cancer treatment. Using an expression cDNA library transfer approach to elucidating the molecular basis of non-P-glycoprotein-mediated multidrug resistance, we previously established that expression of multidrug resistance protein (MRP), an ATP-binding cassette superfamily transporter, confers multidrug resistance (G. D. Kruh et al., Cancer Res., 54: ...

متن کامل

Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells.

Sequestration of drugs in intracellular vesicles has been associated with multidrug-resistance (MDR), but it is not clear why vesicular drug accumulation, which depends upon intracellular pH gradients, should be associated with MDR. Using a human uterine sarcoma cell line (MES-SA) and a doxorubicin (DOX)-resistant variant cell line (Dx-5), which expresses p-glycoprotein (PGP), we have addressed...

متن کامل

مروری بر میزان شیوع و علل مقاومت دارویی در بیماری سالک به ترکیبات آنتیموان در جوامع مختلف مقاله مروری

Cutaneous leishmaniasis (CL) is an endemic parasitic disease of major health impact in many parts of the world and is caused by several species of the protozoan parasite Leishmania. Antimonial compounds (i.e glucantime and pentostam) are the first-line treatment for cutaneous leishmaniasis with emerging drug resistance as a problem. The control of Leishmania is further complicated by the emerge...

متن کامل

Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas.

Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2005